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Abstract 
Driver inattention poses a significant problem on today’s roadways, increasing risk for all 
road users. This report details our efforts in developing algorithms to detect driver 
inattention. A benchmark dataset was developed based on video review of driving events. 
Buffer-based algorithms were developed and compared using this benchmark dataset. 
The benchmark events were also used as a training dataset for machine learning models. 
Driver glance locations were important for determining driver attentiveness. In addition,  
vehicle speed was important for understanding the driving context, which was found to 
have a large impact on driver behavior. 
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Introduction 

In 2020, “as many as 42,060 people are estimated to have died in [U.S.] motor vehicle crashes” 
with a further 4.8 million serious injuries occurring. This resulted in approximately $474 billion 
in economic cost to society (NSC, 2021). Based on the Second Strategic Highway Research 
Program (SHRP 2) Naturalistic Driving Study, distracted driving alone was observed during 
63.8% of crashes (Dingus et al., 2016). This shows the critical importance of limiting distracted 
driving and serves as the impetus for the project detailed in this report: to design better 
inattention detection algorithms using driver eye tracking and vehicle metrics. 

In fact, Level 2 (L2) advanced driver assistance systems (ADAS) (automated cruise control 
[ACC] + lane keep assist [LKA]) have a tendency to exacerbate drivers’ eyes-off-road time 
(EORT), a common stand-in for inattention or distraction, according to a AAA report (Dunn, 
Dingus, and Soccolich, 2019). It is perhaps for this reason that when General Motors (GM) 
introduced Super Cruise, the first hands-off L2 system available, it made use of a driver 
monitoring system (DMS) to ensure that drivers were paying attention to the forward roadway. 
L2 ADAS have the potential to increase driver safety by acting as a safety net for human drivers. 
But this safety benefit is only fully realized if the driver remains attentive, and DMSs have an 
important role to play in ensuring that is the case. 

In an attempt to mitigate the effects of distraction, the United Nations has initiated vehicle 
requirements for DMSs, starting in 2023. This will require all new vehicles manufactured for use 
in the European market to feature driver-sensing technologies starting that year. While this move 
has great potential for alleviating the impacts of distracted driving, it is not a given that all DMSs 
are adequate for accurately detecting inattention. If these systems are not accurate, then drivers 
may begin to ignore any potential warnings of distracted driving issued. For this reason, it is 
important that algorithms for detecting inattention be as accurate as possible to increase drivers’ 
trust in the system. 

Through a previous privately funded project, the research team had access to a naturalistic 
dataset housing DMS data along with other vehicle parameters, such as brake, throttle, and 
steering wheel position. The goal for this project was to leverage this database to investigate 
algorithms to distinguish between attentive and inattentive driver states. 

Background 

Distracted driving is difficult to confidently detect due to wide variation in driver behavior across 
driving environments and contexts. The most straightforward determination of distracted driving 
is when a driver’s eyes leave the road. A study using data from the 100-Car Naturalistic Driving 
Study found that glances totaling more than 2 seconds off-road increased the crash/near-crash 
risk by at least two times (Klauer et al., 2006). However, there are occasions where drivers may 
be looking at the forward roadway but are cognitively distracted (i.e., drowsy or daydreaming) 
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(Masala et. al, 2014). Conversely, an attentive driver making a sharp turn or driving in high 
pedestrian traffic may be scanning other areas around the vehicle besides the forward roadway. 

Although DMSs are becoming more prevalent—in part to identify distracted, impaired, or 
otherwise disengaged drivers—the optimal approach for identifying these behaviors is still up for 
debate. This report will be focused on detecting driver inattention. The most direct way to 
determine driver inattention is by analyzing the driver’s glance behavior using eye-tracking data. 
Previous algorithms use combinations of different glance patterns like glance location, glance 
frequency, glance duration, and eyelid movement (i.e., blinking patterns) (Kircher and Ahlstrom, 
2018). For example, the SAVE-IT project developed an algorithm that considers the proportion 
of off-road glances during the last 3 seconds and the current off-road glance duration (Smith et. 
al, 2008). A study researching the eye-movement measures to in-vehicle tasks determined the 
degree of distraction by analyzing the percentage of time the driver’s gaze is fixated on the road 
center during the last minute (Victor et al., 2005). The AttenD algorithm uses a time buffer that 
is depleted when the driver looks away from the road and reset when the driver looks back at the 
road for a set amount of time (Kircher and Ahlstrom, 2009). An experiment conducted by Smart 
Eye found that gaze fixation away from the forward roadway decreased reaction time more than 
adding an additional cognitive task, so their algorithm determines distraction exclusively from 
gaze fixation away from the forward road (Smart Eye, 2021). 

Additionally, including other vehicle parameters and driver behavior measures can create a more 
robust algorithm when determining a driver’s attention state. Driver facial affects, lane keeping, 
steering movements, time headway, and pedal movement were all used in a simulation study to 
determine distraction (McCall and Trivedi, 2004). For example, the frequency of steering 
correction decreases for inattentive drivers, while the magnitude of corrective action increases. 
Additionally, knowing a driver’s intended actions can help predict their glance pattern. This is 
especially important in high-traffic areas and during turning maneuvers since the driver’s glance 
may not be directed to only the forward roadway. Designing a driver model to predict driver 
behavior is one way to do so (Lie and Salvucci, 2001). By identifying an attentive driver model, 
any deviation from this model could indicate that a driver is inattentive (Wang et al., 2014). 

Most previous algorithms focused on either using an intuitive approach to model the behavior of 
an attentive driver or using machine learning techniques to determine a driver’s attention state. 
Machine learning techniques can be used to objectively decide how different glance patterns and 
metrics determine distraction. Long short-term memory (LSTM) recurrent neural networks use 
memory cells to store and access information over long time periods (driving events) to 
determine driver distraction using subject-specific data (Wollmer et al., 2011). Tango et al. 
(2013) found that a support vector machine (SVM) outperformed other machine learning 
techniques in determining driver distraction. SVMs are supervised learning models with 
algorithms that use regression analysis to classify data. 
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Although considerable attention has been paid to the topic of detecting driver inattention, a 
standardized way to detect this behavior using currently available data and methodologies has 
not emerged. Previous studies have indicated that including a combination of vehicle parameters 
and glance behavior can be the best predictor of driver attention. Thus, this research report seeks 
to investigate which methods and combinations of data are best used in determining driver 
inattention.  

Methods 

Naturalistic Database 
This project had access to two naturalistic driving datasets, both captured during privately funded 
field operational tests, to use for designing and refining attention algorithms. These databases 
were collected during proprietary studies funded by GM and feature kinematic variables, such as 
vehicle speed/acceleration along with driver inputs (steering, brake, and throttle), and driver 
monitoring data. The DMS data consist of coded locations of where the driver was looking 
(Forward, Center Stack, Side Mirror, etc., or On Road/Off Road depending on the database) for 
every timestep. Although different DMSs were used for each of the datasets, both consisted of 
infrared cameras mounted on the steering column with infrared illuminators to ensure that 
drivers’ faces were visible to the camera. Each DMS provided predictions of the driver’s glance 
location throughout all drives at a rate of 10 Hz or greater. 

All data was recorded asynchronously at varying time intervals, but generally in the 10 Hz or 
greater range. As part of a preceding project, the research team developed an initial V0 algorithm 
for detecting inattentive drivers. This algorithm served as the basis for further development 
performed during this project. 

Event Review Process 
In the interest of creating a baseline or ground truth against which to compare algorithm outputs, 
the research team deemed it necessary to create a reasonable method to assess a baseline level of 
attentiveness. Ten-second epochs were selected by the research team from which to build a 
benchmark dataset for algorithm comparisons. Initial events were selected equally across the 24 
participants included in the dataset and equally across 0–20 mph, 20–40 mph, 40–60 mph, and 
60–80 mph speed bins. After these events were reviewed according to the Distraction 
Assessment Methodology section, events were added in an attempt to increase the number of 
events featuring inattentive drivers. These events were sampled from suspected distracted driving 
cases detected by the V0 algorithm developed in the previous research effort. Through this 
review, there were a number of events found in which the V0 algorithm incorrectly categorized 
the driver as inattentive. Actions such as turning at intersections, checking the adjacent lane, etc., 
were sometimes categorized incorrectly by the original algorithm. These events formed the basis 
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for further algorithm development by providing a set of events where performance of the V0 
algorithm should be improved. 

Distraction Assessment Methodology  
The assessment of distraction levels of the drivers within the events was the key component of 
the review process. Determining the levels of distraction and how to define them was the initial 
step of the review process. The table below shows the four levels of distraction that were used in 
the event review process and how each of the levels was defined by the research team to 
accurately depict the state of the driver at any given moment. Although subjective in nature, 
these definitions included key objective indicators (i.e., more heavily distracted drivers generally 
had a higher proportion of EORT), which facilitated consistent categorization. The categories 
described below are indicative of our subjective assessments and served as guidelines during the 
reduction process. 

Table 1. Description of Levels of Attention/Inattention 

Distraction Level Descriptor 
Not Distracted   Driver is clearly engaged in the driving task, characterized by glances off-road to 

locations relevant for safe driving  
 

Slightly Distracted 
These are cases where driver is looking away from the roadway more than strictly 
necessary 

 
Moderately Distracted 

These cases involve more extended glances off-road, sometimes with phone use or 
longer uses of the center console  

 
Very Distracted 

These cases typically include combined sources of distraction with prolonged 
glances off-road to a cell phone and the center console  

 

The four graphs in Figure 1 each show DMS output from a different, representative level of 
distraction. These examples are meant to illustrate typical glance behavior observed across the 
four distraction levels. “Not Distracted” cases featured primarily on-road glances, for instance, 
while the opposite is true for events assessed as “Very Distracted.” 
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Figure 1. Graphs. Sample data from each level of distraction. 

Initially, the same events were reviewed and rated by a pair or researchers independently. Using 
the definitions from the above Distraction Assessment, the researchers designated a level of 
distraction observed during the 10-second epoch. This process was completed for a subset of 100 
events deemed to be distracted, via the initial V0 algorithm, within the original dataset from 
which these events were collected. Following the independent review, a calibration review was 
conducted to ensure that the same approach was being used between both reviewers to ensure 
consistent categorization of events to the best degree possible. Overall results of the calibration 
found a 91% agreement level between the two researchers. 

Benchmark Event Validation 
Per the above approach, the attention levels of the drivers at the end of each event were based on 
subjective assessments performed by two researchers; in order to directly relate the glance 
locations to a driver’s attention level, a comparison was made between glances off-road and the 
prescribed attention level. To have enough context for an entire 10-second event (to match the 
process of the researchers), the glances were aggregated across each event by computing several 
features using the raw DMS data. These features included the number of glances to each 
location, duration of each glance, the mean duration of each glance, and the total percentage of 
each glance location (12) for each 10-second event. In Figure 2, the average percentage of EORT 
during each event is compared to the driver’s attention level. It clearly shows that as a driver’s 
level of distraction increases, the average percentage of time that their glances are off-road also 
increases. This indicates that our subjective assessments generally aligned with expectations of 
EORT as it relates to distraction. 
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Figure 2. Chart. Mean percentage of EORT for each distraction assessment. 

Algorithm Validation Epochs 
Additional subsets of epochs were reviewed as the algorithm development continued, and the 
same process was used to determine drivers’ attention status for each event. These epochs were 
not used to train or modify algorithms, however, and are instead considered a “validation set” to 
compare algorithm performance between approaches. 

DMS Problem Areas 
A key area of investigation during the algorithm development phase was to determine areas in 
which the DMS provided incorrect output, which could impact the attentiveness algorithms. In 
an attempt to locate problematic areas, a frame-by-frame (FBF) review of accompanying video 
data for events was carried out by the Virginia Tech Transportation Institute’s (VTTI’s) data 
reduction lab. This FBF reduction served as the gold standard, allowing the research team to 
compare reduction output directly with DMS data. This FBF review identified and recorded the 
location of the driver’s gaze during the selected events, and was then compared directly to the 
DMS output.  

As a result of this review and subsequent comparison, problematic glance locations within the 
cabin were identified as being more difficult for the DMS to consistently determine the gaze 
location of the driver. 

DMS and FBF Comparison 
FBF video reduction was performed on 2,082 10-second epochs (over 600,000 frames of video). 
Epochs were chosen randomly from the database with the only requirement that the vehicle must 
be in motion (to eliminate cases where attentiveness was of less consequence due to the vehicle 
being stopped). Figure 3 provides a confusion matrix for the resulting data, illustrating that while 
performance is relatively high when drivers are looking forward, the DMS was less reliable in 
distinguishing between off-road locations that were driving related versus not driving related. 
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Figure 3. Chart. FBF vs. DMS confusion matrix for glance types. 

To better understand the performance limitations of the DMS, epochs with high disagreement 
between DMS and FBF were identified and manually reviewed by the research team to 
characterize potential reasons that could explain why the DMS was inaccurate. 

Upon review of these events, certain driver behaviors and postures were noted to be problematic 
and seemed to create errors in gaze location between the DMS and the location identified by the 
FBF review. Within this subset of events, driver behaviors such as turning, i.e. steering wheel 
covering the camera view (33%), arm and hand placement (28%), and seating position (5%) 
were likely impacting the accuracy of the DMS by obscuring the driver’s face or removing it 
from view. In events where driver behavior or posture had no noticeable effect on the accuracy 
of the DMS, the research team applied further review to determine what other items or behaviors 
in the driving environment could cause the DMS to be inaccurate. It was noticed that in more 
than half of these cases, the driver was wearing some form of eyewear, either sunglasses or 
glasses with corrective lenses. While these findings were not objective or conclusive, they were 
seen as additional factors that could explain the performance differences between the FBF and 
DMS assessments.  

“Unknown” Events 
In addition to reviewing epochs with discrepancies between the DMS and FBF reduction, the 
research team reviewed instances in which the DMS returned the driver’s gaze location as 
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“unknown.” This is an extension of investigating problem areas to determine if there are trends 
within the DMS’s characterization of an unknown location or if there were driver behaviors which 
were contributing to uncertainty on the part of the DMS.  

One hundred events were reviewed from both datasets to identify potential causes for unknown 
classifications. Throughout the subset of events reviewed, a commonality among them was the 
driver’s face being obscured due to driver posture or an object obscuring the DMS, such as the 
steering wheel or some other object (e.g., a drinking container). 

Algorithm Development 
The database used for this research project (V0) featured a distraction algorithm developed by 
VTTI but based in part on methods utilized for the Atten-D algorithm. The algorithm involved 
increasing and decreasing buffer values based on where the driver was looking at the time. Once 
the buffers reached a certain value, the driver was determined to either be “attentive” or 
“inattentive.” This general approach formed the basis for the additional exploration in this project. 
In addition to improving this original approach, two different machine learning methods were 
pursued that incorporated vehicle data into the algorithmic determinations. 

Although numerous variations of algorithms were evaluated, this section focuses on a subset of 
the notable algorithms. 

Buffer-based Algorithm 
The buffer-based algorithms created in this study utilize two buffers: AttentionDuration and 
InAttentionDuration. The AttentionDuration buffer increases when the driver is looking at the 
forward roadway. The InAttentionDuration buffer increases when the driver is looking away 
from the forward roadway. Each buffer increases by a factor of the time that the driver is looking 
at a certain location (in seconds). For instance, if the driver is looking forward for 1 second, then 
their AttentionDuration would increase by one. Similarly, if the driver is looking to the center 
stack for 1 second, then their InAttentionDuration would increase by one. Locations such as the 
instrument cluster or rearview mirror were weighted less heavily, as they are driving related, and 
so drivers could look to these locations for longer before being marked as InAttentive. Once each 
buffer increases beyond a threshold, the AttentionStatus (attentive or inattentive) is set, and the 
other buffer is reset to zero.  

Although the initial algorithm only provided an AttentionStatus of either “attentive” or 
“inattentive,” further classifications were created to match the levels of inattention created during 
the benchmark event review (these classifications are included in algorithm V0). This allowed 
for a direct comparison between the algorithm output and the attention assessment from the 
benchmark events, as well as better matching driver behavior observed during the benchmark 
reduction.  

For the initial buffer-based algorithm, glances were sorted into four categories: Attentive, 
Driving Related (inner), Driving Related (outer), and Inattentive. Each glance type had an 
associated weighting that impacted its effect on the In/AttentionDuration buffers. Table 2 shows 
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the classification of each glance location and its weighting. The glances that increased the 
InAttentionDuration buffer are denoted as a negative value. As an example, a 1-second glance to 
the instrument cluster (with a weighting of −1/3) would increase the InAttentionDuration by only 
1/3 of a second. This means that long glances to driving related locations can, correctly, result in 
a driver being classified as “inattentive.”  

Table 2. Glance Classification by Location 

Glance Glance Type Factor 
Forward Attentive 1 

Instrument 
Cluster/Rearview Mirror Driving Related (inner) −1/3 

Right/Left 
Window/Mirror Driving Related (outer) −2/3 

Other Inattentive −1 
 

The V0 algorithm resulted in a notable number of false positive determinations of inattentive 
drivers. Many such events took place in low-speed driving situations where glance patterns 
deviated significantly from those observed at higher speeds. Figure 5 shows the distribution of 
mean squared error (MSE) between the algorithm’s attention assessment and the actual distraction 
level of the driver determined during video reduction at low speed (< 25 mph) and high speed 
(> 25 mph). As seen in the figure, there is a much greater degree of error for the initial algorithm 
at low speeds than at high speeds. This finding was not surprising given the different glance 
demands typical between low- and higher-speed driving environments, and indicates a clear area 
that the research team attempted to improve upon in subsequent algorithms. 

 
Figure 4. Chart. Initial algorithm error by speed. 

V1 Attention Algorithm – Incorporating Speed 
The subsequent algorithms developed used the same general methodology as the V0 algorithm, 
with some minor changes. The speed is incorporated so that the buffers are changed only if the 
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driver is going at least 5 mph. Additionally, the factor by which the buffer is increased is 
determined by the speed; at set intervals of speed, the InAttentionDuration buffer is increased for 
inattentive glances, as indicated in Figure 6. A further variation featured a linearly increasing factor 
between 0 and 65 mph to avoid large jumps in glance weighting as speed moved between 
thresholds. 

 
Figure 5. Diagram. V1 speed thresholds. 

V6 Attention Algorithm – Parameter Search 
The V1 algorithm variation was created by examining trends in the data and carefully crafting 
thresholds or transformations to affect the classification in a way that increased algorithm 
performance. Although this did result in improvements compared to the original V0 algorithm, it 
is slow and, after four additional iterative algorithms it was determined that these methods were 
too slow for continued exploration. 

To counteract this, the team performed a random search on individual parameters to the algorithm. 
This search allowed for efficient testing of thousands of parameter combinations, something that 
is simply not possible to manually perform. Parameter combinations were assessed using the 
average (within each classification type) MSE across the benchmark events, chosen to ensure that 
larger differences between the expected and predicted classification would result in a lower scoring 
algorithm. This allowed a comparison of the performance of each individual parameter 
combination. The individual parameters that the search was performed on, the values that were 
sampled from, and short descriptions are included in Appendix A – Parameter Search Space. 

By including all glance locations individually, theoretically the algorithm can better differentiate 
between attention types as it is not grouping glance locations and thus is more flexible to patterns 
observed in the data. Combined, these parameters offer a potential 3,227,550,665,472,000 unique 
combinations. Obviously, it was unrealistic to sample all combinations within the scope of this 
effort, and thus a random search was performed with 20,000 combinations randomly chosen for 
evaluation. The distribution of the average MSE for each combination is shown in Appendix B – 
Parameter Search Results. The value with the lowest median score was chosen for the final set of 
parameters as the representative buffer-based algorithm. 

Data Bagging 
Although the parameter search described in the previous section chose thresholds for classifying 
driver attentiveness levels, the research team explored using output from the algorithm like 
InAttentionDuration over a time span to classify driver’s attentiveness levels. To do so, we 
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calculated the total maximum of each of these buffers during a driving event, as well as the sum 
of the local maxima of each buffer during a driving event. Using an ordinal logistic regression 
model, it was determined that using a combination of these values is best at determining the 
driver’s attention state: 

• AttentionDuration and InAttentionDuration at the end of the event 
• MaxAttentionDuration and MaxInAttentionDuration during the 10-second event 
• SumAttentionDuration and SumInAttentionDuration during the 10-second event 

Data bagging takes a sample of a dataset and generates a set of models independently to then apply 
to an entire dataset with a more accurate prediction. Using a similar technique, we determined the 
25th- and 75th-percentile of each of the six values above across all attention states: Not Distracted 
(0), Slightly Distracted (1), Moderately Distracted (2), and Very Distracted (3). This statistical 
aggregation then determines which attention state is predicted by each of the six buffer values. 
Then, an average is taken across all six buffer values to determine the overall attention state of the 
event (a continuous value between 0 and 3). 

Machine Learning Approaches 
The more traditional algorithm defined in the previous section is easily interpretable and intuitive 
to explain, but incorporating additional vehicle information (e.g., steering wheel input) quickly 
becomes more complex, especially when trying to combine multiple parameters. Due to this 
limitation, the research team explored two primary machine learning methods for determining 
driver attentiveness using the available data. The research team’s application of machine learning 
amounts to a classification problem, where data examples are provided to an algorithmic process 
along with ground-truth values for classification outcome, and the correct classification is 
“learned” via training. The first method that will be discussed is a neural network approach. The 
second approach made use of logistic regression. 

Neural Networks 
As a basis for the neural network architecture used for this classification problem, the team made 
use of a deep learning model developed by Feng et al. (2021). This model makes use of 
convolutional layers and gated recurrent units to capture the time-dependent nature of the time-
series data used for this project. In the case of Feng et al., they were predicting crashes, near-
crashes, and normal driving from acceleration data, but the model was similar enough to prove 
useful to the attention classification at hand. A diagram showing the full neural network 
architecture is included below. Outputs were a one-hot encoded value corresponding with one of 
the four levels of attentiveness established in the Distraction Assessment Methodology section. 
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Figure 6. Diagram. Neural network diagram – glance only model. 

Prior to training, all data were normalized to values between 0 and 1 using the scikit-learn 
MinMaxScaler function to improve model learning performance (Pedregosa et al., 2011). All 
neural network variations were created and trained using the Keras application programming 
interface (API) (Chollet, 2015) within Tensorflow version 2.4.0 (Abadi et al., 2016). A variation 
of categorical cross entropy that accounts for ordered classes was used as the loss function (Hart, 
2017). 

After establishing the base neural network architecture, changes were only made to the input layers 
of the model to incorporate new sources of data to use in the classification process. Five separate 
models were created, each trained with a set of data featuring different vehicle parameter data. The 
different data available to each variation is presented in Table 3. 

Table 3. Data Used in Neural Networks 

Variation 
Glance 

Location Speed Steering Torque Brake Pedal Position Throttle Position 
NN1 P     
NN2 P P    
NN3 P P P   
NN4 P P P P P 
NN5  P P P P 
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The more traditional algorithm development showcased the importance of speed in distinguishing 
between levels of attentiveness, and thus speed is included for each neural network 
implementation, except for NN1, which served more as a benchmark for performance without 
additional vehicle measures. Similarly, NN5 also was to serve as a reference for performance using 
vehicle data alone. 

Results 

In order to compare the accuracy of each algorithm, the research team developed many different 
ways to score the algorithms and settled on directly comparing the MSE between the algorithm 
output and the subjective assessment given to the benchmark events. The attention levels of “Not 
Distracted,” “Slightly Distracted,” “Moderately Distracted,” and “Very Distracted” were turned 
into the numerical output of 0, 1, 2, and 3, respectively. Then the events were split up into their 
benchmark distraction assessments to determine the algorithm accuracy within each category. 

Figure 8 shows the algorithm performance versus the benchmark assessment. If the algorithm 
returned the same AttentionStatus as the benchmark reduction, then it was marked as correct; if it 
returned a different value then it was marked as some level of false positive (for cases where the 
algorithm incorrectly marked someone as more inattentive than they were) or false negative (for 
cases where an algorithm indicated someone was more distracted than they were). If an algorithm 
was perfect, then there would be green bars across each level of attentiveness. Grades of false 
positive and false negative are used to indicate whether the algorithm was off by only one level; 
i.e., slight false positive would apply for cases where the driver was actually “Not Distracted” but 
the algorithm returned “Slightly Distracted,” and false positive applies when the assessment is off 
by two or more levels. 

 

Figure 7. Charts. Algorithm performance by benchmark assessment. 
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We can see that the buffer-based algorithms (V0, V1, V2, and V6) have consistently fewer false 
positive cases than their deep learning counterparts (V8–12). The deep learning models do 
accurately identify more of the moderately distracted and very distracted cases, in general, but also 
misclassify “Not Distracted” drivers as “Moderately” or “Very Distracted” in a large number of 
cases. Algorithm V10 is a case study of this, accurately identifying almost 60% of “Very 
Distracted” cases but also misclassifying ~30% of “Not/Slightly Distracted” cases as “Very 
Distracted” as well.  In general, these algorithms were biased towards classifying drivers as “Not 
Distracted” regardless of their true AttentionStatus. This theme continues throughout the results, 
and it is expected that this approach would improve given larger amounts of training data. This 
sets up an interesting tension between accurately identifying highly distracted cases while keeping 
the number of misclassifications low, and will be discussed in more detail in coming sections. 

Using MSE to compare algorithm performance can identify cases where algorithms perform well 
in some areas but ultimately underperform due to false negative/positive misclassifications, as was 
observed for the deep learning examples above. Figure 9 shows the average MSE for each 
algorithm categorized by the attention assessment determined during video reduction. An ideal 
algorithm would have 0 error, so lower values indicate higher performance in this chart. This 
shows that all of the algorithms had a relatively low MSE for the “Not Distracted” events, and that 
the machine learning algorithms (V8–V12) generally had a larger MSE for more distracted cases. 
This is indicative of the larger number of false negative classifications in the “Moderately” and 
“Very Distracted” categories observed in Figure 8. 

 

Figure 8. Chart. MSE by benchmark assessment for select algorithms. 

Based on the average MSE across each attentiveness level, the research team was able to achieve 
the greatest overall performance with algorithm V6, a buffer-based algorithm with further 
processing on the algorithm outputs (AttentionDuration, InAttentionDuration, etc.) over time to 
determine attentiveness. This algorithm achieved a very high level of accuracy, especially in 
detecting “Moderately” and “Very Distracted” events. A continuing problem across all buffer-
based algorithms, however, is false positive occurrences for real “Not Distracted” cases 
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misclassified as “Moderately Distracted” and “Very Distracted.” Properly assessing driver 
behavior at all speeds and in all traffic conditions proves very difficult still, but the accuracy 
observed for true distraction events indicates promise for correctly identifying risky driving 
behaviors. 

Discussion 

The research team was consistently challenged by the variation in driver behaviors that fall under 
the various categories of attentiveness defined in this report. It was discovered quite early that it is 
exceedingly difficult to use simple heuristics to assign a level of inattention to a driver based on 
the available data and a human understanding of what distraction looks like. One of the most 
important discoveries was the differences in glance behavior at high and low speeds. Incorporating 
this information is integral for distinguishing between attentiveness levels. 

DMS accuracy also can be problematic. Although forward glances are typically accurate, 
distinguishing between other glance locations proves difficult for the systems in use for this study. 
This leads to uncertainty in algorithm output and accuracy. One way to counteract this would be 
to bake in probabilistic models based on the accuracy of each location. 

Although this study did not directly tackle the question of driver acceptance of distraction detection 
systems, it is logical to assume that driver response would be more favorable to systems that 
accurately assess their behavior. Given this assumption, it is critical that accuracy be as high as 
possible and distraction detection systems reduce false positives. To account for this, the research 
team used MSE to evaluate algorithm performance, which favored algorithms that have fewer false 
positive and false negative classifications. 

Buffer-based algorithms performed highly in this study. These methods also have the benefit of 
being interpretable and intuitive for humans to understand. Although this is a benefit to designers 
and those studying the problem, the type of algorithm deployed is unlikely to have much impact 
once implemented within vehicles. Still, for improving upon algorithm performance, 
understanding how an algorithm comes to an assessment is important and can help identify weak 
points or areas of improvement. 

Deep learning approaches presented in this study failed to improve overall performance over even 
the V0 algorithm, which suffered particularly at low speeds. The research team suspects this is due 
to the relatively small amount of training data available. Given large amounts of data, deep learning 
methods are generally effective at identifying patterns and performing classification tasks. Despite 
a high false positive rate, these models did have a higher classification accuracy for more highly 
distracted cases, which indicates there is potential benefit in these methods over a buffer-based 
approach. 
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An appropriate next step in algorithm assessment would be increasing the amount of available 
training data and performing algorithm comparisons again. Not only would performance likely 
improve, but integrating additional data sources into deep learning models is considerably less 
time-consuming than for the buffer-based models presented in this report. For this reason alone it 
is important to continue assessing deep learning for applications in this area. 

Conclusions and Recommendations 

DMSs can be an important component in reducing inattention and crashes related to distraction. 
The findings presented in this report indicate that both gaze location and vehicle speed at a 
minimum should be used to assess driver distraction. Speed is particularly important for accurately 
establishing a driver’s attentiveness levels due to large deviations in acceptable glance patterns at 
low and high speeds. Designing a single algorithm that is effective across a wide range of speeds 
without incorporating changes based on speed itself is problematic based on our review of the 
described benchmark events. 

It is important to understand that no DMS is likely to be 100% accurate, and therefore algorithms 
making use of this data should be designed with an understanding of the limitations of this 
underlying data. If a system is to gain a driver’s trust, then it must correspond with their own idea 
of distraction to an extent. A key component of this is not overestimating the accuracy of the 
system as to be falsely confident. If a system features an alert component based on driver 
distraction, but a driver feels they often receive false alerts, then trust is eroded and a driver is 
more likely to ignore future warnings. 

As driver assistance features continue to advance and L2 and L3 ADAS become more 
commonplace, the driving context and data available to underlying distraction detection algorithms 
also change. This should have an impact on the design of algorithms for detecting distraction as 
the level of automation in use by the driver affects the available data for an algorithm to determine 
attentiveness. For L2 systems, for instance, an algorithm can no longer make use of changes in 
speed, lane position, and steering wheel torque because the vehicle is now in charge of maintaining 
the vehicle’s positioning and speed. These are all important context to consider as the development 
of ADAS and DMSs continues into the future. 

One last note regarding our approach to detecting driver inattention is worth mentioning: the model 
we developed did not integrate required scanning of the environment (to maintain situational 
awareness) into its final assessment. All glances away from the forward roadway were penalized, 
though driving-related glances were penalized to a lesser extent. For identifying truly attentive 
drivers, this is potentially insufficient, as scanning mirrors and surrounding traffic is a necessary 
component of safe driving. Further work in this area, for instance trying to identify drivers who 
are attentive and ready to resume control of a vehicle with L3 automation capabilities, should likely 
account for these behaviors. This was considered out of scope for the current research effort as we 
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were more focused on detecting driver distraction rather than levels of readiness or positive 
attention. 

Additional Products 

The Education and Workforce Development (EWD) and Technology Transfer (T2) products 
created as part of this project are described below and are listed on the Safe-D website here. The 
final project dataset is located on the Safe-D Dataverse. 

Education and Workforce Development Products 
Through this project we have partially funded a Ph.D. student and contributed to her development 
as a student and researcher by providing direct experience working with industry data and on a 
serious problem within the transportation landscape. She has presented the research resulting from 
this project at campus events and it will form a part of her thesis materials. 

Additionally, the content generated from this project is being developed into a learning module 
for use in the classroom. The project’s principal investigator is currently discussing with Virginia 
Tech faculty the feasibility of presenting this module in their classes.  

Technology Transfer Products 
Throughout the course of this project, its members have been in communication with an industry 
champion to discuss results and potential applicability within industry of the algorithm 
development included in this report. Although it is unlikely that these discussions will result in 
direct inclusion of these algorithms into vehicles, discussing the ideas and methods used can help 
demonstrate what is possible in this space. 

The student involved in this project has already presented the results of our research at the 
Lifesavers conference in March 2022. The research team is pursuing a journal publication and 
plans to support a Safe-D webinar following project conclusion. 

Data Products 
The data uploaded to the VTTI Dataverse includes 2,082 separate time-series events with 
driver glance location, speed, braking, and throttle activity. These events can be used as 
data for training potential attentiveness algorithms. Along with this raw data, output will be 
included for all of the algorithms discussed in this report. The dataset can be found here.

https://safed.vtti.vt.edu/projects/improving-methods-to-measure-attentiveness-through-driver-monitoring/
https://dataverse.vtti.vt.edu/dataset.xhtml?persistentId=doi%3A10.15787%2FVTT1%2F98NBN7


18 

References 

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, et al. TensorFlow: A System for Large-
Scale Machine Learning. 12th USENIX Symposium on Operating Systems Design and 
Implementation, (OSDI ’16), 2016. 

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated Recurrent Neural 
Networks on Sequence Modeling. NIPS 2014 Deep Learning and Representation Learning 
Workshops, 2014. 

Collet, F., et al. Keras, 2015. https://keras.io/ 

Feng, G., C. Qian, L. Shi, and C. Tao. Driving Risk Assessment via High-Frequency, High-
Resolution Telematics Data. Safe-D Webinar. August 26, 2021. 

Hart, J. Keras Ordinal Categorical Crossentropy Loss Function, 2017. 
https://github.com/JHart96/keras_ordinal_categorical_crossentropy 

Kircher, K., and C. Ahlstrom. Evaluation of Methods for the Assessment of Attention While 
Driving. Accident Analysis and Prevention, Vol. 114, 2018, pp. 40-47. 

Kircher, K., and C. Ahlstrom. Issues Related to the Driver Distraction Detection Algorithm 
AttenD. Chalmers University of Technology, 2009. 

Klauer, S., T. A. Dingus, and J. D. Sudweeks. The Impact of Driver Inattention on Near-
Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data. NHTSA, 
U.S. Department of Transportation, 2006. 

Liu, A., and D. Salvucci. Modeling and Prediction of Human Driver Behavior. Intl. Conference 
on Human-Computer Interaction, 2001. 

Masala, G. L., and E. Grosso. Real Time Detection of Driver Attention: Emerging Solutions Based 
on Robust Iconic Classifiers and Dictionary of Poses. Transportation Research Part C: 
Emerging Technologies, Vol. 49, 2014, pp. 32-42. 

McCall, J. C., and M. M. Trivedi. Visual Context Capture and Analysis for Driver Attention 
Monitoring. IEEE Intelligent Transportation Systems Conference, 2004 

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al. Scikit-Learn: Machine 
Learning in Python. The Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825-
2830. 

Smart Eye, and B. Wolfe. Our Eyes or Our Minds – What Causes Driver Distraction? Smart Eye, 
2021. 



19 
 

Smith, M. R. H., G. J. Witt, and D. L. Bakowski. A Final Report of Safety Vehicles Using Adaptive 
Interface Technology: SAVE-IT Summary and Benefits Estimation. NHTSA, U.S. 
Department of Transportation, 2008. 

Tango, F., and M. Botta. Real-Time Detection System of Driver Distraction Using Machine 
Learning. IEEE Transactions on Intelligent Transportation Systems, Vol. 14, Issue 2, 2013, 
pp. 849-905. 

Victor, T., J. Harbluk, and J. A. Engstrom. Sensitivity of Eye-Movement Measures to In-Vehicle 
Task Difficulty. Transportation Research Part F: Traffic Psychology and Behaviours, Vol. 
8, 2005, pp. 167-190. 

Wang, W., J. Xi, and H. Chen., Modeling and Recognizing Driver Behavior Based on Driving 
Data: A Survey. Mathematical Modeling, Analysis, and Advanced Control of Complex 
Dynamical Systems, Vol. 2014, 2014. 

Wollmer, M., C. Blaschke, B. Schuller, B. Farber, S. Mayer, and B. Trefflich. Online Driver 
Distraction Detection Using Long Short-Term Memory. IEEE Transactions on Intelligent 
Transportation Systems, Vol. 12, Issue 2, 2011, pp. 574-582. 

  



20 
 

Appendices 
Appendix A – Parameter Search Space 

Parameter Name Description Values Sampled 

Speed Cutoff 
Speed (in mph) under which no change to the 
assessment is made [0, 5, 10] 

Reset Attentiveness Threshold 
InAttentionDuration value  at which 
AttentionDuration is reset to 0 [0.5, 0.6, 0.75, 1.0, 0.4] 

Reset InAttentiveness Threshold 
AttentionDuration value  at which 
InAttentionDuration is reset to 0 [0.5, 0.6, 0.75, 1.0, 0.4] 

Slight Threshold 
InAttentionDuration value above which the 
driver becomes "Slightly Distracted" [1.0, 0.75, 1.25, 1.5] 

Moderate Threshold 
InAttentionDuration value above which the 
driver becomes "Moderately Distracted" [3.0, 1.75, 2.0, 2.5, 4.5] 

Very Threshold 
InAttentionDuration value above which the 
driver becomes "Very Distracted" [5.0, 4.75, 5.25, 5.5] 

Speed Threshold 
Maximum value at which to linearly scale the 
speed factor applied to In/AttentionDuration [15, 25, 35, 45] 

Unknown Weight See note. [0, -0.5, 0.5] 
Forward Weight See note. [1, 0.9, 0.8, 1.1, 1.2] 

Instrument Cluster Weight See note. [-0.33, 0, -0.2, -0.15, 
0.1] 

Center Stack Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Rearview Mirror Weight See note. [-0.33, 0, -0.2, -0.15, 
0.1] 

Left Mirror Weight See note. [-0.5, -0.33, -0.25, -0.6, 
-0.4, -0.7] 

Right Mirror Weight See note. [-0.5, -0.33, -0.25, -0.6, 
-0.4, -0.7] 

Driver Lap Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Passenger Footwell Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Off Road Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Off Road Left Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Off Road Right Weight See note. [-1, -0.9, -0.8, -1.1, -
1.2, -1.3] 

Off Road Up Weight See note. [1, 0, 0.9, 0.8, -0.5] 
Note: Value by which to increase In/AttentionDuration. A value of 1 linearly increases with time, i.e. 1 second 
looking to a location with a 1 weight would increase the corresponding duration value by 1. A value of 2 would 
double the increase, and a value of 0.5 would halve the increase. Positive values indicate that AttentionDuration 
would increase with that weighting, and negative values indicate the same for InAttentionDuration. 
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Appendix B – Parameter Search Results 
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